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ABSTRACT

Hamilton-Jacobi (H-J) equations are frequently encountered in applications, e.g. in con-

trol theory and differential games. H-J equations are closely related to hyperbolic conserva-

tion laws r in one space dimension the former is simply the integrated version of the latter.

Similarity also exists for the multi-dimensional case, and this is helpful in the design of dif-
ference approximations. In this paper we investigate high order essentially non-oscillatory

(ENO) schemes for H-J equations, which yield uniform high order accuracy in smooth re-

gions and resolve discontinuities in the derivatives sharply. The ENO scheme construction

procedure is adapted from that for hyperbolic conservation laws. We numerically test the

schemes on a variety of one-dimensional and two-dimensional problems, including a problem

related to control-optimization, and observe high order accuracy in smooth regions, good

resolution of discontinuities in the derivatives, and convergence to viscosity solutions.
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1. INTRODUCTION

The Hamilton-Jacobi (H-J) equation

Ot + H(O.,,. .. ,€,= 0
(1.1)

O(I,o) = 0o(z)

appears often in applications, e.g., in control theory and differential games. The solutions

to (1.1) typically are continuous but with discontinuous derivatives, even if the initial

condition 0(x) is C'. The non-uniqueness of such solutions to (1.1) also necessitates the

introduction of the notions of entrcoy condition and viscosity solutions, to single out a

unique practically relevant solution. See, e.g. Crandall and Lions [1] for details.

An important class of numerical methods for solving (1.1) is the class of monotone

schemes discussed by Crandall and Lions [2]. Monotone schemes are proven convergent to

the viscosity solutions. Unfortunately monotone schemes are at most first order accurate.

Traditional high order methods are unsuitable, because spurious oscillations will generally

occur in the presence of discontinuous derivatives.

There is a close relation between (1.1) and a hyperbolic conservation law
U, + Ydf,(u) = 0

(1.2)

u(x,0) = u0(x).

In fact, for the one dimensional case d = 1, (1.1) is equivalent to (1.2) if we take u =

For multi-dimensions this direct correspondence disappears, but in some sense we can still

think about (1.1) as (1.2) "integrated once". Hence successful numerical methodology for

solving hyperbolic conservation laws (1.2) should also be applicable to the H-J equation

(1.1).
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Essentially non-oscillating (ENO) schemes have been very successful in solving the

hyperbolic conservation law (1.2), Harten and Osher 13), Harten, Engquist, Osher and

Chakravarthy [41, Shu and Osher [7], [8]. The key idea is an adaptive stencil interpolation

which automatically obtains information from the locally smoothest region, hence yields a

uniformly high order essentially non-oscillatory approximation for piecewise smooth func-

tions. We summarize this ENO interpolation procedure as follows:

Given point values f(xj),j = 0, ±1, ±2,... of a (usually piecewise smooth) functions

at discrete nodes xj, we associate a r-th degree polynomial Pf,/ 2 (x) with each interval

Jxj, xj+]], constructed inductively as follows:

(1) 1f1-X/2 (x) = f[xj] + f[xj,xj+l (x- xi), kmin -

(1.3)

(2) If kmeii) and Pl/2x m are both defined, then let

a(t) = f[x k-),... Xk()+]

and

(i) if Ia"t ) >I b(t)j, then c b(t) ), 071) - 1
otherwise c(t) a(), k10) -k(tl)

mm - m)

(j"tl2(X) = PJf-l,%( + c+(t) (J -X,)

min

2l
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In the above procedure f[.,... ,.] are the usual Newton divided differences. Notice that

we can also start from one node x1 to build a polynomial Pf' r(x) using the same procedure.

In [61 Osher and Sethian constructed ENO type schemes and applied them to a class of H-

J equations and perturbations, arising in front propagation problems. They achieved very

good numerical results. In this paper we provide a more general ENO scheme construction

procedure, mainly by considering different multidimensional monotone building blocks.

We then numerically test the schemes on a variety of one and two dimensional problems

including a problem related to control-optimization, check the accuracy in smooth regions,

the resolution of discontinuities in derivatives, and the phenomenon of convergence to

viscosity solutions. Concluding remarks are given in Section 4.

2. SCHEME CONSTRUCTION

For simplicity of exposition we take d = 2 in (1.1), and use x, y instead of x1, x 2 :

{ €+ H(€,,€y) = 0 (2.1)

4(x,Y,0) = 0(x, y)

For mesh sizes Ax, Ay, At, 0. will denote a numerical approximation to the viscosity

solution O(x,, yj, t') = (iAx, jAy, nAt) of (2.1). We also use standard notation such as

At=A =At At= z' Av = -- A ¢J = +( 1j- CU, + = ±( ,1- )

We start with a first order monotone scheme [2]:

So( ' Ax ' A ' 2AY 2
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where H is a Lipschitz continuous monotone flux consistent with H:

fI(u,u,v,v) = H(u,v).

Monotonicity here means that A is non-increasing in its first and third arguments and

non-decreasing in the other two. Symbolically H(j, T, 4, T).

We now give some examples of monotone fluxes H:

(1) Lax-Friedrichs [2]:

fILF(u+,u-,v+,v+-) 2 2 -- a(u -u-)- ay(v+-v - ) (2.3)

where

= max IHI(u,v)l, ay max IH2(u,v)l (2.4)
A<u<B A<u<B
CZv<_D C<_v<D

Here Hi(u, v) is the partial derivative of H with respect to the ith argument. The flux

f 1 LF is monotone for A < u± < B, C < v± < D;

(2) Godunov type (5]:

.- G(u+,u-,v+,v-) - ext ext H(u,v) (2.5)
uEl(u-,u+) vEI(v-,v+)

where

I(a,b) = [min(a,b), max(a,b)]

and the function ext is defined by

rin if a<b
ext = <<- (2.7)

UEI(a,b) max if a > b
b<u<a
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As pointed out in [5], since in general min, max, H(u, v) # maxv minu H(u, v), we will

generally obtain different versions of Godunov type fluxes ftG, by changing the order of

rnin and max. Uniqueness of ftG happens when, e.g., H(u,v) = H'(u) + H 2 (v), and in

many other cases. Then, by [5], -tH-G(u, v) is the exact solution to the Riemann problem

of (2.1), i.e., this is the viscosity solution of (2.1) for

0 (x, y) = XuO(X) + yvO(y), UO(x) vO(y) = (2.8)

evaluated at (x, y) = (0, 0), and t > 0.

For this reason all monotone fluxes can be regarded as approximate IMiemann solvers in

this sense.

(3) Local Lax-Friedrichs (LLF) [8]:

. LLF(u+, -,v+,-)=H(u+ + u-  ++v)- a'(uu)(u+,u-)-Y(v+, v-)(V+-t-)

(2.9)

where

x(u+, u-)= max IHi(u,v)l, ay(v+,v-)= max +H 2 (u,v)l (2.10)
uEI(u- ,u+) vEI(v- ,v+)

C<v<D A<u<B

In the appendix we prove that HLLF is monotone for A < u ' < B, C < v+ < D; Notice

that f 1 LLF has smaller dissipation than fJLF .

(4) Roe with LLF entopy correction [8]:
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H(u*,v*); ifHi(u,v) and H 2(u,v) do not change signs

in u E (u-,u+), v E I(v-,v+);

.H( U+L ,v*) -I (u+,u-)(u+ - u-); otherwise and if H 2(u,v)

fRF(u+, u-, v+, v-) does not change sign in A < u < B, v E (v-, v+)

H(u*, V++V)- Lay(v+, v-)(v+ - v-); otherwise and if H,(u, v)

does not change sign in u E I(u-, u+), C < v < D,

fILLF(u+,U, V+ , -); otherwise

where u*, v* are defined by upwinding:

u+  if Hi(u, v) < 0 V+  if H 2(u,v) < 0u* --{; v* -- (2.12)

u- if H,(u,v) >O v- if H 2(u, v) O

We will prove in the appendix that f-RF is monotone for A < u- < B, C < v+ < D.

Notice that HRF is simple to code, purely upwinding, with almost as small dissipation

as HG . Also notice that 'RF is not continuous: for example if H(u) -- 2 (one space
dimension) then HRF(1,0) 0 but _RF(l,e) = L___ I-. I .(1- -#0.

= bt2 2 0

However, this type of discontinuity does not hurt, because we have

IftRF(U+U-V+,V-) - HG(U+,U-v+,?) : M(ju+ - u- + jv+ - v-J); (2.13)

hence we still get consistency and accuracy.

REMARIK 2.1. A flux with even smaller dissipation than f7ILLF is

fILLLF(u+,u-,v+,v-) g( -'+ -= , H( 2 ± )(u+_u-) (u+,Z±)(1+_,,-2 2 2- o 2uv

(2
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where

a (U ,V ) max IHI(u,v)l, ay(u ,v±)= nax IH2 (u,v)l. (2.T)
UEI(u-,u+) uEl(u-,u + )
VEI(v- ,v+) vEI(v- ,v+)

Unfortunately it is not monotone: for example, if H(u, v) = eu + v, then fILLLF(2 , 0,0,20) >

fjLLLF(O, 0 , 0, 2 0). For separable Hamiltonians with H(u, v) = H1 (u) + H 2 (v) we have

fLLLF =. fLLF.

We now begin the description of our high order ENO schemes. Monotone fluxes playI

the role of "building blocks". The ENO inter-,-Iation idea in (1.3) is used to obtain high

order non-oscillatory approximations to u± = 0± and v± = 0±. These valucs are then

put into a monotone flux H(u+, u-, v+ , v-). Time accuracy is obtained by a class of TVD

Runge-Kutta type time discretizations [7]. We summarize the algorithm as follows:

ALGORITHM 2.1:

(1) At any node (ij), fix j to compute along the x-direction, by using (1.3), obtaining

- "P j(X"). (2.16)

Similarly for v±. Then let

L,; = -. ,tH(u, uij, v,+, t,) (2.17)

(2) obtain 0"+I from 0' by the following Runge-Kutta type procedure:

k-Ik!e) M, t () 21a
r=j +f3keLV) k = 1,... ,r (2.16a)

1=7
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(0) :, (? ;+ (2.18b)

We can take r = r and positive akt and OkI for up to third order r < 3. The method

(2.18) can be proven TVD under the CFL condition:

At
= < Cr,\0 (2.19)

if the Euler forward version of (2.17) is TVD under the CFL condition

At
\ = At < AO. (2.20)

Ax

We summarize some of the schemes (2.1S) in Table 2.1:

Table 2.1 TVD Runge-Kutta method (2.19)

Order rkI /3 k Cr

1 1
2 1

1

3 31 0 1
4 4 4

10 20 0
3 3 3

1 1
2

I 1 _1 1

4 2 2 2 2
1 2 2 _1 _ 1
9, f 3 9 3'

01 . 0 L1 1
3 j 06 6

8



Albq.rithm 2.1 is formally uniformly r-th order in space and time in smooth regions

(measured bv local truncation errors).

Notice that in the algorithm above, we need to evaluate two polynomials p .r to get

u1. If the monotone flux is purely upwind and there is no "sonic point" (points at which

H 1 or H 2 changes sign), one of u+ and u- is never used. We thus recommend the following:

ALGORITHM 2.2:

(1) Computeii= ' " and b . If Hi (u, v) and H2 (u, v) do not change signs

in u E I(ii, f+), v E I(i3,, i,), then compute only u*, and vi by (2.16) where u", v" are

defined by (2.12); and take Lj - -AtH(u*, v*); otherwise take (2.17).

(2) Same as step (2) in Algorithm 2.1. 0!

Notice that Algorithm 2.2 is NOT equivalent to Algorithm 2.1 with Hf = JJRF. Since

we expect sonic points to be isolated, Algorithm 2.2 is usually almost twice as fast as

Algorithm 2.1.

REMARK 2.2. Notice that, in smooth regions, by Taylor expansion,

d O,r A±Oi Ax
dx ± (X')i Ex = 2T'Orr W (2.21)

if we choose, instead of (2.16),

(4:'M P d POr(2.22)

where the projection P is defined by

y, if a-b<y<a+b

P[o,bj(y)= a-b, if y<a-b (2.23)

a +b, if y>a+b
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we will still have uniform high order accuracy u: =( + O( A .r) in any region where

0, < 2M. Algorithm 2.1 will then give a scheme which deviates from a monotone

scheme by A Afix, hence we trivially obtain convergence to the viscosity solution through

the theory for monotone schemes. In practice we do not recommend (2.22), because the

parameter M is not intrinsic - it has to be adjusted for each individual problem. See [7,

p. 452] for a discussion of a similar situation for conservation laws.

REMARK 2.3. When implementing (1.3) we use undivided differences:

!z(j,0) = Y" (2.24a)

V(j.k) = V(j+1,k- 1)- (j,k- 1), k= 1,... ,r+ 1 (2.24b)

The computation of (2.24) can be easily vectorized. The ENO stencil-choosing process is,

for computing u+ = (p)+, starting with i(j) = j and performing

if (abs( (i(j), k)). gt. abs( (i(j)-1, k))) i(j) = i(j) - 1 (2.25)

for k = 2,... ,r, where i(j) is the left-most point in the stencil for P', (x). This can also

be vectorized. Finally

+ r

U ) AEc(i(j)- J,k)(i(j),k) (2.26)
k=i

where
n+k-1 m+k-I

c(m, k)I (2.27)

fos

Notice that the small matrix c is independent of po, is only computed once and then stored.

(2.26) can be vectorized easily as well.

3. NUMERICAL RESULTS

10



EXAMPLE 1. One dimension. We solve

Ot + H(O.) = 0

¢(x, 0) = - cos irx

with a convex H (Burgers' equation):

H(u) (u + a)2 (3.2)
2

and a non-convex H:

H(u) = - cos(u + a). (3.3)

Notice that if we let v = 0. + a, f(v) = H(v - a), then (3.1) becomes a conservation law

vt + f(v) = 0
-1< X < 1(3.4)

v(x, 0) = a +7r sinrx

which is a standard test problem for conservation laws (e.g. [71). We can easily use the

method of characteristics to obtain the exact solution of (3.1) through that of (3.4).

We take a = 1 and compute the result to t = tj = 2 - (when the solution is still smooth)

and to t = t2 1. (when the solution has a discontinuous derivative). We print out the

L 1 and L,, errors, in Table 3.1, for selected first order monotone schemes and third order

ENO schemes in smooth regions, i.e. the whole region [-1,11 for t = tj and the region

Ix - x81 > 0.1 for t = t2 where x, is the location of any discontinuity of the derivative. We

also present the graphs of the numerical solutions (in diamonds) versus the exact solutions

(in solid lines) in Figures 1 and 2.
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Table 3.1 L1 and L, Errors in Smooth Regions for (3.1)

Time t - 0.5f/.2 t- 1.5/ 2

of pts 10 20 o 8o 10 20 4o 8o

L 1 1.0 -1) 5.10(-2) 2.59(-2) 1.31(-2) 2.01(-) 1.13(-l) 6.1(-2) 3.16(-2)

L, 336(-2) 1.50(-2) 7.66(.-3) 3.87(-3) 5.914(-2) 3.18(-2) 1.10(-2) 8.5o(-3)

Godunov ---

L 7.4i0(-2) 3.61(-2) 1.93(-2) 1.01(-2) 1.12(-1) 3.93(-2) 3.00(-2) 1.51(-2)

L, .13(-2) 1 .27(-5) 1.65(--2)

1. 3.1-2) 5.08(-3) 8.75(-4.) 2.07(-4) 3.40(-2) 7.81(-3) 1.33(-3) 1.07(-4)

w L,3Go - . -)95(4 1.3-)25-5 737-)11-3 1.66)28-

L., 1.5(-2) 4.48(-3) 7.53(-4) 1.52(-4) 2.29(-1) 6.76(-3) 9.79(-4) 1.04(-4)

L, 5.79 -3) 9.56(..4) 1. 2(-4) 2.56(-5) 8.19(-3) 1.-15-) 1.46(-4) 2.85(-5)

L. 1.52(-2) 4.48(-3) 7.55(-) 1.52(-4) 2.29(-2) 5.92(-3) 9.9,(-3) 1.04(-)L :-- , 2 .70-) 1.19(-) 5.56(-3) 2.58(.-3) 5.51(2) 2..83(-2) 1..3,(-2) 6,.43(-3)

L,, 1.52(-2) 5.9(-3) 2.46(.) 1.16(-3) 2.41(-2) 9.10(-2) 1.5(-3) 2.0( - 3)
L -.. . 3.,.2c-.) ',1-2c-) 5.-W-,) 2,.7(-3) 4.69(-2) 2.36-2) 1.26(-2) 5.78-,-3

EHO3L Ll 1.62(-3) 5.68(-4) 8.92(-5) " .. 7(..6) 8.8(-3) 1.-.o(-3) 1.84(-4) 2,.43('-1

EN-3-RF - - - - . . .

1 .-(. -5)1 3.27(-2)1 5.94(-3) 1.3(-3) 2.01(-41

12
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REMARK 3.1. From Table 3.1 and Figures 1 and 2 we can observe that:

(i) the resolution of third order ENO schemes with 10 points is roughly the same as that

of the corresponding monotone schemes with 80 points;

(ii) ENO-3-Godunov and ENO-3-RF have roughly the same resolution, even if the latter

is much simpler than the former and only takes about half time.

EXAMPLE 2. Two dimensions. We solve

{ q + H(O4 01) = 0t -2 < x, y,.5 2 (3.5)

0(X, y, 0) = -cosr r

with a convex H (Burgers' equation):

S(u + v + a)2  (36)
H(u,v) = 2(36

and a non-convex H:

H(u, v) = - cos(u + v + a). (3.7)

Notice that, under the transformation '+Y 2 1 = z-,(.)-(36 37 bcmY312 2-) (35) - (36) - (3.7) become (3.1)

- (3.2) - (3.3) in the direction. We can thus use the one dimensional exact solution to

analyze our numerical results. Since we use (x, y) coordinates, this is a true two dimensional

test problem.

0.5 adt=t - '.Sm eut r

We again take a = 1 and compute to t = tj = -r and t = t2 Some results are

presented in Table 3.2 and Figure 3.

13



Table 3.2 L, and L.. Errors in Smooth Regions for (3.5)

Tim t - 0. 5/02 t .5/72

SOf IntsD 10 2 202 0 2 802 102 202 4o0 802

hr L 1.04(-i) 5.10(-2) 2.59(-2) 1.31(-2) 2.214(-1) 1.25(-1) 6.79(-2) 3.51(-2)

L, 10 .81(-1) 1.08(-l) 6.03(-2) 3.23(-2) 3.17(-1) 1.72(-1) 8.98(-2) 4.59(-2)

EM-3-Ly ___ ____

U 14 3-37(-2) 5.09(-3) 8.75(4.~) 2.14(-4) 3.1-2) 7.8W(-3) 1.34(-3) 1.15(-41)

LI'
LW 4.15(-.2) 2.36(-2) 1.30(-2) 6.98(-3) 1-03(-1) 4&.72(-2) 2.29(-2) 1.12(-2)

L 16.23(-3)1 2.33(-3) 14.82(-24) 1.07(-4) 1.42(-2) 9.10(-3) 1.56(-3) 16.13(4)

REMARK 3.2

(i) By comparing Table 3.2 with Table 3.1 we can see that ENO schemes perform

equally well in two dimensions;

(ii) Notice that, except for a sharper discontinuity-in-derivative resolution, we cannot

see much difference between Figures 3(a), 3(c) (first order monotone schemes) and

3(b), 3(d) (third order ENO schemes). However, from Table 3.2 we can dlearly see

a large difference in the resolution of the solution in smooth regions. This indicates

the limitations of graphical presentations;

14



(iii) In this two dimensional case, the Godunov flux is considerably more complicated

to program than LF or RF, with a not-so-significant improvement in resolution for

ENO-3. 0

EXAMPLE 3. We solve a two dimensional non-convex Riemann problem

t , + sin(S + 0) = 0

1 (X ,y,o) = r(Iy I- jX ) (3.8)

to investigate the resolutions of different building blocks, the behavior of different versions

of Godunov flux (2.5); and convergence to viscosity solutions. The results are in Figure 4

and 5: From the graphs and computer outputs we can observe:

(i) ENO-3 with G1, G2 (two versions of Godunov fluxes), LF and RF as building

blocks are all convergent to the viscosity solution, with a much sharper resolution

for the discontinuities-in-derivative than the corresponding first order monotone

schemes;

(ii) ENO-3-RF has roughly the same resolution as ENO-3-Godunov, with a much sim-

pler program and a reduced computer cost;

(iii) The difference between two versions of Godunov fluxes is very small: the average

difference at t = 1 is around 1000 times smaller than the L1 errors.

(iv) ENO-3, using the Roe flux as a building block without entropy corrections, i.e.,

Algorithm 2.2 without using (2.17) for entropy corrections in "sonic cells", converges

to an incorrect solution just as the first order Roe scheme (Figure 5). This indicates

the importance of entropy corrections in "sonic cells".

EXAMPLE 4. We solve the following problem related to control-optimal cost determi-

nation:

( - (siny)¢z + (sinx +sign(Oy))O - 1 sin 2 y -(1- cosx) = 0

1(x,Y,0) = 0 (3.9)

15



assuming periodicity. The results at t = 1 are presented in Figure 6. Notice that third

order ENO schemes have sharper discontinuities-in-derivative resolution than first order

monotone schemes. For this problem the interesting quantity is the optimal solution w =

sign(o,), Figure 5d. A sharper discontinuities-in-derivative resolution means smaller error

for w in the neighborhood of each such point.

4. CONCLUDING REMARKS

We have generalized ENO schemes for conservation laws to Hamilton-Jacobi type equa-

tions. Computational results indicate good accuracy in regions of smoothness, sharp dis-

continuities in derivatives, and convergence to the correct viscosity solutions. Algorithm

2.2 (ENO-RF) is usually preferred, due to its simplicity to program, reduced computa-

tional cost, and its excellent resolution, which is comparable to the results using the much

more complicated Godunov type building blocks.
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APPENDIX

We prove that fJLLF and fjRF are both monotone. To simplify the exposition we only

consider the one dimensional case. The proof for the multi dimensional case is similar.

LEMMA A.1 fILLF is monotone.

Proof fILLF in one dimension is defined by

= H U + U- - 1 max IH'(U)i(,,+ - u-). (A.1)
2 2 uEI(u-,u+)'

We assume u,+ > U+ and want to prove kLL(U,+,U-) _tLLF(j, u-). Let D

fILL(u+,u-) - fLLF(U+,u-). This equals:

H(U+ 2 U-_(n++±uu 1

2 2 uE ,,i -,,U+) 2 a uct'(~u-u2-u -

CASE (i) u+ > U4 > u-. We have for u- < u2++ < t++s < +

1- 2 2 - 2 --

D [H'( )(u+ - u+ ) max IH(u)l(u+ - u-) + max IH'(u)I(u - u)]

< )- mx (u)(u - u-) + max IH'(u)I(u2 - Ur)

(U+ - U+) ')- _max IJ'(u) _: 0;-2 1 H'2 - eu ku I
-1

CASE (ii) u- > u+ > u+ , similar to case (i);
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CASE (iii) u+ > u- _> u+. We have, for u- < U + an nd <

2 2 2 - 2 <-7 u ,

D [H'()( - u-) + H'(Yl)(u- - +) - max - -u )

+ max _ H'(u)I(u2 - C)
U4 

<IA<U J

= (+--) H'(c)- max H'(u)j + I (u- u+j - max IH'(u) <0

Hence we proved/H(., .. We can similarly prove kt(., T) S

LEMMA A.2 J1 RF is monotone.

Proof. HRF in one dimension is defined byI H(u+) if H'(u)<0 in u EI(u-,u+)

HRF(u+,U-)= H(u-) if H'(u) 0 in tE I(u-,u + ) (A.2)

kftLLF(u+,u-) otherwise.

We assume u, > u2 and want to prove fIRF(u+,u-) I fzRF(u+,-).

Let D = k-RF(U+,u-)- fIRF(u+,u2).

CASE (i) ktRF(u+, Ul) I ftG(ut4 ", ul) and fIRF(U+ , u ) = IG(u+ u.) or IRF(u+, u-) =

ffLLF(U+, u-) and fiRF(u+, U-) = ftLLF(u+, U-), then automatically D > 0.

CASE (ii) kHRF(u+,u'-) = H(u-), kIRF(u+,u-) = fLLF(u+,u-). Then H'(u) > 0 in

i(u, u+) but H'(u) changes sign in I(u. , u*), hence I(u2 , u+ ) 0 I(u, u+ ). Therefore

u+ > u'. We then have either

19



(a) u+ > u- > u-, and, for u- < < u+ we have

D = [H'()(2u - - u+) + max IH'(u)I(U - u2)

1U - U-)Fmax IH'(u)l- H'( ) + 3 (u- - u-) max IH'(u) I + H'() > 0
= ( U- <U<;<j2U

2 -_

or (b) u- > u+ > u-, and, since H(u') > H(u+ ) due to the fact that H'(u) > 0 in

[u+, u-1, we have, for u +  ' - > U2 -2

D H(ul)- ftLLF(u+,u-) H(u ) - fILLF(u+, UT)

= 5[H'(C)(u+ - u2) + max IH'(u)I(u - u2
2 - - 2

(U+ - U2 max IH'(u)I + H'(C) 0;

- - 2 2- U <U<U+ I

CASE (iii) ftRF(u+,u') H(u+), ftRF(U+,-) ftLLF(U+, U)

As in case (ii) we can again deduce u+ > u-; hence, for u- < -u < ' < u+, we have

D= H(u+) - fILLF(U+, U)

-l [H'(,)u+ - u2-) - max IH'(u)l(u+ - u2)] 0;
2= 2 -u2- <u+

CASE (iv) IRF(u+,u') fLLF(U+, U), fIRF(u+,u ) = H(u2) similar to case (ii);

CASE (v) ftRF(u+, u-)= fLLF(u+,u'I), fIRF(u+,u;-) = H(u+) similar to case (iii).

We have proved f(., Similarly for f(j, -) 0
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Figure 1 One dimensional Burgers' equation
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Figure 2: One dimension, H(u) =-cos(u + 1)
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3a First order Lax-Friedrichs, convex H 3b ENO 3-LF, convex H

3c First order Lax-Friedrichs, non-convex H 3d EI\ 03-LF, non-convex H

Figure 3: Two dimensions, 40 x 40 points
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4a First order Lax-Friedrichs 4b ENO-3-LF

'PFrtodernvvrinI dEO3G

4e First order, Godunov, version 11 4f ENO-3-G2

4h ENO-3-RF
4g First order Roe with entropy correction

Figure 4: Riemann problem (3.8), 40 x 40 points, t I .
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3a First order Roe 5b ENO-3-Roe

Figure 5: Riernann problem (3.8), 80 x 80 points, t 1

6a First order Lax-Friedrichs 6b ENO-3-LF

6c ENO-3-RFp 6d -w=sign(4,), ENO-3-LF

Figure 6:. Control problem (3.9), 40 X 40 points
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